UDI
Unique Device Identification

ID Technology Guide
Label and Marking Compliance
For Medical Device Manufacturers
This ebook covers the highlights of the FDA’s UDI final ruling passed on September 24, 2013. It is not intended, and should not be used, to substitute information from FDA’s ruling.
Introduction

Patient safety with regards to the identification of medical devices, protection from counterfeit devices, and the ability to recall devices quickly and accurately has led to the development of the Unique Device Identification (UDI) system.

These issues are currently and more often addressed using independent identification methods. The supply chain, from manufacturer to patient, remains fragmented making it difficult, sometimes fatal, to trace the original product back to the manufacturer, or find other affected products on storage shelves.

The FDA started formerly addressing this issue in 2007.

On September 24, 2013, the FDA issued the Final Rule making UDI mandatory to adequately identify devices through distribution and use.

When fully implemented, the UDI system will:

- Allow more accurate reporting, reviewing and analysis of adverse event reports so that problem devices can be identified and corrected quickly.
- Reduce medical errors by having the ability to rapidly and precisely identify a device and obtain important information about it.
- Provide a standardized identifier to better manage medical device recalls.
- Provide a foundation for a global, secure distribution chain, helping to address counterfeiting and diversion and prepare for medical emergencies.

Product Identification Numbers - Unreliable without Standardized UDI

Product tracking and timely, accurate recalls in adverse situations is often a lengthy, laborious process. As it stands today, the product identification number cannot be used in many cases as the product number or catalog number is changed as it passes along the supply chain.
What is UDI?

A UDI stands for Unique Device Identification. It is a unique numeric or alphanumeric code that includes a device identifier, which is specific to a device model, and a production identifier. It includes the current production information for that specific device, such as the lot or batch number, the serial number and/or expiration date.

The UDI must appear on every device using a label or direct marking such as with ink jet or lasers, except where it is not feasible according to the FDA definition.

A UDI label for a fictitious medical device is shown here.

<table>
<thead>
<tr>
<th>UDI Acronyms</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUNS</td>
<td>D&B Number- needed for GUDID</td>
</tr>
<tr>
<td>UDI</td>
<td>Unique Device Identification</td>
</tr>
<tr>
<td>GLN</td>
<td>Global Location Number GS1</td>
</tr>
<tr>
<td>GTIN</td>
<td>Global Trade Item Number GS1</td>
</tr>
<tr>
<td>GMDN</td>
<td>Global Medical Device Nomenclature</td>
</tr>
<tr>
<td>GUDID</td>
<td>Global UDI Database</td>
</tr>
<tr>
<td>DI</td>
<td>Device Identifier</td>
</tr>
<tr>
<td>PI</td>
<td>Production Identifier</td>
</tr>
<tr>
<td>AIDC</td>
<td>Automatic Identification and Data Capture</td>
</tr>
<tr>
<td>GS1</td>
<td>The GS1 Standards Organization</td>
</tr>
<tr>
<td>HIBCC</td>
<td>Health Industry Business Communications Council</td>
</tr>
<tr>
<td>ICCBBA</td>
<td>International Council for Commonality in Blood Banking Automation, Inc.</td>
</tr>
</tbody>
</table>

UDI Acronyms

When reading the FDA’s final ruling on UDI and working to meet compliance regulations for UDI, you will come across acronyms that stand for terms related to the UDI mandate. If you are already working with identifying, labeling and tracking your products, you will most likely be familiar with many of the acronyms listed here.

New users may want to refer to this guide when learning to become familiar with these terms. Definitions can easily be found online or through your associated vendor.
FINISHED DEVICES MANUFACTURED AND LABELED AS OF THE COMPLIANCE DATE ESTABLISHED BY FDA.

<table>
<thead>
<tr>
<th>Device</th>
<th>Label/GUIDID/Date Format Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class III medical devices and devices licensed under the Public Health Service Act (PHS Act)</td>
<td>September 24, 2014</td>
</tr>
<tr>
<td>Implantable, life-supporting, and life-sustaining devices. A device that is a life-supporting or life-sustaining device that is required to be labeled with a UDI must bear UDI as a permanent marking on the device itself if the device is intended to be used more than once and intended to be reprocessed before each use.</td>
<td>September 24, 2015</td>
</tr>
<tr>
<td>Class III devices required to be labeled with a UDI must bear a UDI as a permanent marking on the device itself if the device is a device intended to be used more than once and intended to be reprocessed before each use.</td>
<td>September 24, 2016</td>
</tr>
<tr>
<td>Class II device that is required to be labeled with a UDI must bear a UDI as a permanent marking on the device itself if the device is a device intended to be used more than once and intended to be reprocessed before each use UDI.</td>
<td>September 24, 2018</td>
</tr>
<tr>
<td>The labels and packages of class I medical devices and devices that have not been classified into class I, class II, or class III must bear a UDI.</td>
<td></td>
</tr>
<tr>
<td>Class I devices, and devices that have not been classified into class I, class II, or class III that are required to be labeled with a UDI, must a bear UDI as a permanent marking on the device itself if the device is a device intended to be used more than once and intended to be reprocessed before each use.</td>
<td>September 24, 2020</td>
</tr>
</tbody>
</table>

Time Line for Compliance

The requirement for device labels and device packages to bear a UDI is phased in over several years based on the risk factor of the device.

Direct mark requirements are in addition to label/GUIDID/date format requirements.

For details on UDI compliance dates, see the UDI final rule (Sept. 24, 2013).

As dates are subject to change, it is advised to check with the latest dates from the FDA directly.
The UDI Compliance Plan

With the final rule issued on September 24, 2013, the phased-in compliance deadlines are published. UDI compliance may require changes in your current procedures and impact several areas in your organization.

It’s a good idea to get started now to develop an implementation plan that will bring you in to UDI compliance by the mandated deadline. Not only will you have necessary time to ensure compliance is 100%, but you’ll most likely realize opportunities for additional longer-term benefits from your UDI investment.

FOCUS OF THIS EBOOK

>> Develop Labels and Package Markings <<

The remaining content in this ebook focuses on understanding the UDI formation, identification labeling, and marking at the required unit through packaging levels.

Additional information on the UDI ruling can be found at the FDA and other websites.
Manufacturers (“Labelers”) must assign a UDI-compliant code developed using globally accepted standards to their product; create the UDI (unique identifier) to include the lot or serial number if specified by FDA.

Parts of the UDI

The UDI code is a unique numeric or alphanumerical code that includes two parts: a device identifier (DI), which is specific to a device model, and a production identifier (PI), which includes the current production information for that specific device, such as the lot or batch number, the serial number and/or expiration date.

The UDI is defined as consisting of 2 parts:

The Device Identifier - DI

The fixed component, or static part of the UDI consists of the company prefix and the item number. Note: The company prefix will depend on the Standards being used.

The Product Identifier - PI

The dynamic information about the device such as the lot or batch number, manufacturing date, expiration date, or the serial number, if required.

Both parts of the UDI, the Device Identifier and the Product Identifier make up the UDI and can be concatenated into one long barcode or split into two barcodes.

Manufacturers are responsible for creating and maintaining the uniqueness of its medical device UDI and shall not be altered.

Standard Date Formats on Device Label

Whenever the label of a medical device includes a printed expiration date, date of manufacture, or any other date intended to be brought to the attention of the user of the device, the date must be presented in the following format: the year, using four digits; followed by the month, using two digits; followed by the day, using two digits; each separated by hyphens. For example, January 2, 2018, must be presented as 2018-01-02. See 21 CFR 801.18(b) for exceptions to this requirement. This requirement only applies to plain text dates on the device label.

Dates in the AIDC technology portion of the UDI, or in the device history record, for example, are not subject to these date format requirements. In the event that a medical device expires in a particular month, but not a particular date, the labeler may choose the last day of the month for the date field because the date field is a requirement of the new format.

The standard date format is required for all medical devices unless excepted. This change should be implemented on the device label by the UDI compliance date for that device.

It is important to note that any label or RFID tag also display human-readable text in case AIDC scanning or reading tools are unavailable.
The label and device package of each medical device must now include a UDI with an automatic identifier.

Here is a sample of the linear barcode:

Example of a DataMatrix code compared to the size of a dime. (not shown to actual size.)

Typically 1/10th to 2/10th of an inch, 2D symbologies contain a substantial amount of data and error correction characteristics making it easier to mark parts, accurately and process quickly.

The FDA requires the use of at least one Automatic Identification/Data Capture (AIDC) technology to carry the UDI identifier on all non-exempt devices and/or packaging.

The UDI shall be on the label of the device or directly marked on the device itself and requires that each UDI be provided in a plain-text version and in a form that uses automatic identification and data capture (AIDC) technology.

AIDC - The Linear Barcode and the 2D DataMatrix

The FDA doesn’t dictate which type, so you can use a linear bar code, 2D matrix or RFID. However, hospitals, clinics, and other healthcare organizations use all types of technologies for auto ID, so it makes sense to know how your label is going to be read by the end user.

The two common forms of AIDC are linear barcodes and 2D barcodes, which include the QR code or the DataMatrix code. RFID can also be used, although can be cost prohibitive for some applications.

The linear barcode may be the most recognizable barcode representing data by varying the widths and spacings of parallel lines. Some applications require more data to be encoded in the barcode. The more data, the larger your barcode will be, and may exceed the limitations of the linear barcode.

Two-dimensional (2D) symbologies are designed for applications where space is an issue. 2D bar codes offer greater data storage capacity using high-density identification and error correction features, 2D symbologies are commonly used to store much more data in a much smaller area, such as data needed to track parts, WIP, traceability and compliance with the UDI rule.

GS1 Standard combines the advantages of the DataMatrix barcode with the GS1 data structure – the result being called GS1 DataMatrix.

The rule only requires that the UDI is presented on the label or package in human-readable format and a barcode format. Your choice of barcode is driven by the issuing agency you choose to base your UDI compliance.

The commonly used barcodes include GS1-128, GS1-Datamatrix, GS1-Databar, HIBC DataMatrix, HIBC Code 128, HIBC Code 39.
The labeler/manufacturer must submit product information concerning devices to FDA’s GUDID, unless subject to an exception or alternative. The manufacturer is responsible for maintaining the accessibility of their UDI and the related information in the UDI Database.

UDI Database - GUDID

A requirement of the UDI rule is the management and transmission of UDI related data into the FDA’s global database, the GUDID or Global Unique Device Identification Database.

The GUDID is based on universal standards for medical device identification and includes a standard set of basic identifying elements for each UDI.

For each Device Identifier (DI) (no PIs):

- The proprietary/trade/brand name of the device.
- Previous DI if a new version or model.
- The version or model number.
- If direct marked, DI if different than label.
- The size of the version or model.
- The type of production identifiers on the label.
- FDA premarket submission and listing number(s).
- Global Medical Device Nomenclature (GMDN) term.
- FDA product code (procode).
- The number of individual devices in each package.
- Commercial distribution status.
- Higher levels of packaging.
- Whether it is a kit, combination product, HCT/P.

Whether the device is labeled:

- As sterile or sterilize before use (and how).
- Higher levels of packaging
- As containing natural rubber latex with MRI compatibility (safe, conditional, unsafe).
- As Rx and/or OTC.

There are currently 3 ways to upload the required data:

1. Use the web tool.
3. Pay a 3rd party.
How do labelers obtain UDIs?

For purposes of maintaining standardization, FDA requires all UDIs to be issued under a UDI system operated by an FDA-accredited issuing agency. In order for a device labeler to assign a UDI to a device, the labeler must participate in a system administered by an accredited issuing agency. FDA keeps a list of accredited issuing agencies.

What is an issuing agency?

An issuing agency is an organization accredited by FDA to operate a system for the issuance of UDIs according to the criteria and processes outlined in 21 CFR 803 Subpart C—FDA Accreditation of an Issuing Agency. Each FDA-accredited issuing agency will be permitted to design and operate its device identification system in any manner that conforms with the technical standards incorporated by reference in part 830.

Standards Available for UDI Labeling

Global data standards are necessary so that each party within the supply chain identifies the same products in the same way. The FDA does not mandate which auto ID carrier to use, but consider your customers. Not all healthcare providers have the capabilities to handle all of the different carriers. Select the appropriate standard and technology for your product and customers.

The primary standard identifiers for medical-surgical products available are:

- **ISBT 128**: is the International Standard for Blood and Transplant organs and can contain up to 128 characters.
- **GS1’s GTIN**: is a fixed length numeric code of up to 14 digits in length. The GTIN has traditionally been used in the pharmaceutical industry.
- **HIBCC’s HIBC-LIC**: is an alphanumeric code of up to 18 characters, and has been used historically in the medical device supply chain.
GS1 (Global Standard 1) and UDI

Today, The GS1 is an accepted issuing agency for the FDA’s UDI initiative.

Under the GS1, the Global Trade Item Number™ (GTIN™) is used for the unique identification of trade items worldwide. Integrity of these numbers throughout the item’s lifetime is a key to maintaining uniqueness for manufacturers, wholesalers, distributors, hospitals, regulatory bodies and other Supply Chain stakeholders.

Brand Owners or manufacturers must allocate and maintain their GTINs according to the rules of the FDA UDI mandate and the GS1 Standard. The label/direct mark must survive for the life of the product to preserve the link back to the database.

A change to one aspect, characteristic, variant or formulation of a trade item may require a new GTIN.

Some common reasons for a GTIN (DI) to change are:

- Change in quantity of a device package.
- Change to package sterility.
- Re-labelling of the original labeler’s (manufacturer) device.
- Change labelling languages for different global markets.
- Change in certification mark, e.g., CE Mark.

NOTE: Refer to the appropriate UDI regulation and the GS1 Healthcare GTIN Allocation Rules for complete details on regional influence for GTIN change.

<table>
<thead>
<tr>
<th>Single Unit Package</th>
<th>Multiple Unit Package</th>
<th>Case</th>
</tr>
</thead>
<tbody>
<tr>
<td>GTIN A</td>
<td>GTIN B</td>
<td>GTIN C</td>
</tr>
<tr>
<td>00857674002010</td>
<td>10857674002017</td>
<td>40857674002018</td>
</tr>
</tbody>
</table>
Barcode Standards

<table>
<thead>
<tr>
<th>UDI Unique Device Identification</th>
<th>GS1 Standards Product Identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>DI Device Identifier (DI)</td>
<td>GTIN Global Trade Item Number</td>
</tr>
<tr>
<td>PI Production Identifier (PI)</td>
<td>AI Application Identifier (AI)</td>
</tr>
<tr>
<td>(if applicable)</td>
<td>• Expiration Date A1(17) - e.g. 141120</td>
</tr>
<tr>
<td></td>
<td>• Lot/Batch A1(10) - e.g. 1234AB</td>
</tr>
<tr>
<td></td>
<td>• Serial Number A1(21) - e.g. 12345XYZ</td>
</tr>
</tbody>
</table>

Production Identifier data will vary by medical device type and manufacturer current practice.

DI + PI = UDI GTIN or GTIN + AI(S) + UDI

Unique Device Identification as it relates to GS1 terms

UDI Compliance Using GTINs

Both linear or 2D barcodes can be used for compliance with the UDI automatic ID identification requirement.

There are two ways to use linear barcodes:

1. Use one linear with GTIN (DI) and Production Identifier (PI)
2. Use 2 separate barcodes, one for GTIN (DI) and one for Production Identifier (PI)

The third illustration here shows using the 2D barcode to combine all the data into one barcode.

Parts of the GS1 Standard can be correlated with UDI requirements. Since GTINs may be 8, 12, 13 or 14-digits in length, their data structures require up to 14-digit fields. Therefore, all GTIN processing software should allow for 14 digits.

GTINs may be 8, 12, 13 or 14-digits in length. Their data structures require up to 14-digit fields, and all GTIN processing software should allow for 14 digits.
HIBCC Standards for UDI

HIBCC stands for the Health Industry for Business Communication Council. Historically, the medical device industry has used HIBCC UPNs (Universal Product Numbers), and the supply chain and supporting systems of many device manufacturers have been built using HIBCC codes.

- HIBCC codes are alphanumeric and up to 18 characters in length.
- They generally have a smaller label footprint as compared to the GS1 option.
- At present, HIBCC requires a one-time fee scaled against gross sales with no annual recurring fees - a benefit for small device manufacturers.

One of the drawbacks of HIBCC is the perception that it is primarily U.S.-focused and less global than other options.

Use Linear or 2D Barcodes

The information to be encoded in the automatic ID includes the LIC and the product code for the item, level of packaging, and then the last digit is a check digits (calculated by the barcode to be sure it is encoded properly).

Labeler Identification Code (LIC)
Assigned by HIBCC. Identifies the labeler. It is four alphanumeric characters.

Product Code / Catalogue ID
Assigned by the labeler. Identifies the item/drug/device. 1-18 alphanumeric characters.

Package Level / Unit of Measure
Assigned by the labeler. Identifies the packaging configuration level of the item; e.g., Unit-Dose, Carton, Case, Master-Case, Pallet, etc. 1 numeric character.

4.3.1 HIBC LIC Primary Data Structure

Shown below are the symbols for the HIBC LIC Primary Data Structure

4.3.3 HIBC LIC

Concatenated Primary and Secondary Data in a 2D Symbol

The data structure of the HIBCC SLS was designed to accommodate identification of multiple levels of packaging from pallets down to individual units of measure, using a standardized code and consistent format. This allows for easier identification within various packaging configurations, as well as consistency throughout the global marketplace.
About ICCBBA

ICCBBA stands for International Council for Commonality in Blood Banking Automation, Inc. ICCBBA enhances safety for patients by managing and promoting the ISBT 128 international information standard for use in transfusion and transplantation.

ISBT 128 is the global standard for the terminology, identification, labeling, and information transfer of medical products of human origin (including blood, cell, tissue, milk and organ products) across international borders and disparate health care systems. It is used in more than 77 countries across six continents. The standard has been designed to ensure the highest levels of accuracy, safety, and efficiency for the benefit of donors, patients, and ISBT 128 licensed facilities worldwide.

UDI Label Standards - ISBT128 (ICCBBA)

ISBT stands for International Standard for Blood and Transplant
128 stands for 128 characters of the ISO/IEC 646/7-bit character set.

Alphanumeric
Numerous Fields

The FDA views human tissue as a medical device. Therefore, the new UDI Rule applies.
UDI at The Product and Packaging Level

Different UDIs are required at each unit of measure. Each level of the packaging requires its own UDI.

Direct part marking provides UDI on some products, such as devices that are implantable, or devices that can be sterilized and reused.

Packaging levels means the various levels of device packages that contain a fixed quantity of medical devices, e.g. each, carton, case. This does not include shipping containers such as pallets.

The UDI-DI (e.g., GS1 GTIN, HIBC-LIC, ISBT product code) should be globally unique at all levels of packaging.

Where to Apply the UDI?

The UDI is to be applied on the base package label and the device package level.

Packaging Levels

The GTIN (DI) and AIs (PIs) should be in barcode and in human-readable form on each applicable package level as defined by regulation. Each designated package level must have its own GTIN (DI).

Barcodes are to be displayed on the product packages to allow ready access to scanning equipment when the product is stored or stocked on shelves.

1. Orientation: The barcode is to be displayed on the package so the human readable portion is viewed when in storage or stacked.

2. Display Panel: Barcodes are to be displayed on the panel or label most likely to be seen when the package is stored.

Examine your packaging.

The FDA requires a unique UDI at each unit of measure. So each individual product has its own UDI, as would the same product in a box of 12, and in a case of 12 boxes.
In this next section, we will discuss the layers of packaging and UDI printing or marking requirements.

- Laser Marking for direct parts marking and cartons/cases
- Thermal Transfer Labels for products, packaging and pallets
- Thermal Transfer Overprinting, Continuous and Traversing Inkjet, Flexographic and Digital for printing on flexible packaging
- High Resolution Inkjet for cases

Printing The UDI - The Label or Direct Mark

The FDA’s UDI Rule requires a UDI on the medical device, and/or packaging according to the specifications within the rule.

Issuing agency requirements, costs, available equipment/services, and internal business processes are the main factors in your decision on how to mark the UDI.

Since UDI requires that each level of packaging is identified with its own UDI, a number of different technologies may be needed to ensure that everything is printed and labeled correctly.

Compliance guidelines do not specify using a label or require a direct mark for most products. (For exceptions, refer to the FDA’s Ruling.) Each has its own pros and cons.

Product Level UDI- Direct Parts Marking

Direct Mark Laser

- When using a label is not feasible.
- Permanent mark.
- Withstands harsh environments.
- Stands up to sterilization processes.
- For reprocessed implantable devices.
- Can be used for marking cartons.

Regardless of whether you are using GS1 or HIBCC as your standards organization, ID Technology’s Macsa Laser can print compliant verifiable UDI marks directly onto your products. They are also excellent for printing onto chipboard and other carton types.

A Macsa CO2 or YAG laser can print text, graphics and barcodes; both 2D and linear barcodes are supported.
Product Level UDI - Label

Thermal Transfer Labels

Thermal Transfer labels are a popular way to apply UDI markings products and offer a lot of flexibility in sizes, shapes, and materials.

- High resolution print for barcodes, text and graphics.
- High contrast output for scanning reliability.
- An assortment of materials from paper to the strength of polyester and polyimide ensure proven performance in water rinses, chemical contact, abrasion, extreme temperatures, contact with blood, moisture, and all your labeling challenges.
- Quality prime labels for image branding with coding.

Thermal printers are often the best choice for their portability, speed, and ability to create high quality, durable labels on demand.

Industrial class thermal printers offer 24/7 reliable performance for large production facilities. Desktop and clamshell printers offer space saving alternatives.

Thermal Transfer Label Materials

Manufacturers must now label most medical devices distributed in the United States with a “unique device identifier” (UDI). The label materials must comply with UL/IEC 60601-1 3rd edition marking and durability rub tests and potentially are UL 969-certified.

Finished labels must be compliant with Title 21 - Food and Drugs, Chapter I- Food and Drug Administration, Subchapter H- Medical Devices, Part 801 Labeling.
Software of some type will be required to generate the AIDC and labels for UDI compliance.

Most modern label software packages, such as NiceLabel, BarTender and Marca are able to print the GS1 or HIBCC barcodes. Here at ID Technology, we can provide label templates for our BarTender software. It is simple to connect the software to external databases to populate labels with the correct data.

Shown here is an example of creating the GS1 barcode using BarTender Label Design Software. BarTender comes with simple wizards to help with the design of GS1 and HIBCC barcodes.

Shown here is an example of creating the UDI Label with NiceLabel Software.
Printing UDI on Primary Packaging

In many cases, the UDI mark will need to be printed onto primary packaging, rather than onto the product directly. Primary packaging for medical devices often consists of cartons or flexible materials, such as film Tyvek or paper.

Genesis Digital Printing Systems

Designed to integrate with your horizontal packaging machine, the Genesis digital printing system offers high resolution, high-speed printing directly onto packaging substrates.

- Stable UV inks that cure immediately to eliminate smearing and distortion.
- Built in controls and software provides flexibility for using a range of image file types.
- Print complete graphic and variable information, such as lot numbers, expiration dates, and all UDI barcode requirements.
- Excellent print quality for printing on the entire package.
- Available in one and two color versions as well as full CYMK color.

Thermal Transfer Printing

High Volume printing of variable information such as date codes, lot numbers and UDI barcodes on demand.

- Print high quality UDI barcodes, text and graphics onto many types of flexible packaging.
- High speed, high volume printing.
- Output language or international symbols from a database directly onto packaging for distributing to global markets.

Both in-line and traversing thermal printers for both the top and bottom webs of packaging on horizontal form, fill, and seal machines.
Flexographic Hybrid Printing

Greydon’s flexo printer combines the low-cost of flexographic technology with digital printing. The entire package is printed in-line along with other fixed and variable information.

- Reduce inventory of costly pre-printed materials.
- Available in one or two colors.
- Print in-line with the material feed or across the web.

To print variable data, such as date or lot codes, or UDI barcodes, onto packaging you can add an additional thermal transfer or inkjet printer.

Non-Contact Continuous Inkjet Printers

Add identifying marks such as date & lot codes, barcodes, traceability codes and logos to almost any kind of material or surface.

Designed and built here in the USA, our Citronix ci3000 Series CIJ printers are well known as being the easiest to use in the industry and for producing excellent print quality.

Wide range of Inks, available in multiple colors and properties to suit your application.
Printing UDI on Secondary Packaging

Secondary packaging keeps the primary packaging safe and helps it retain its original shape during transport. Cardboard boxes, cardboard cartons and plastic crates are common types of secondary packaging.

High Resolution Inkjet

Replace preprinted cases and cartons with large character printing on demand. ProSeries ink jet printers produce high quality, high resolution text, barcodes and graphic images. Various printhead configurations, provide up to 4” high print at 300 dpi print resolution.

Label Printer Applicators

Our models for labeling shipping cases include the 252N, designed with a narrow profile to minimize aisle usage. Choose the integrated 252CTL (case taper/labeler) for a true case sealing, labeling solution.

Laser Coding

Macsas lasers can print can print UDI barcodes, text and graphics onto both primary and secondary packaging.
For secondary packaging coding, a laser receptive material, such as DataLase is often used.

3-Panel SmartTamp for Pallets

Three-Panel Smart Tamp label printer applicator provides a rugged and flexible solution for printing and applying labels to multiple sides of a pallets or boxes.
Summary
The content in this ebook focuses on understanding the UDI formation, identification labeling, and marking at the required unit, primary and secondary packaging levels.

If you are facing UDI compliance, ID Technology can help simplify your UDI compliance labeling and marking. Our full line of durable thermal transfer labels, full range of thermal and flexographic printers, GS1 and HIBCC label templates, software, barcode scanners, and other products ensure you are UDI compliant.

ID Technology designs, manufactures and integrates custom identification systems and is recognized as a leading single-source provider for labels and labeling, coding and marking equipment.

This ebook covers the highlights of the FDA’s UDI final ruling passed on September 24, 2013. It is not intended, and should not be used, to substitute information from FDA’s ruling.

Additional information on the UDI ruling can be found at the FDA and other websites.

Other Helpful Resources for FDA UDI (click the links to visit the sites)
Labeling News: http://www.labelingnews.com
FDA’s Unique Device Identification System: FDA’s UDI Site